Step of Proof: connex_functionality_wrt_implies
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
connex
functionality
wrt
implies
:
1.
T
: Type
2.
R
:
T
T
3.
R'
:
T
T
4.
x
,
y
:
T
. {
R
(
x
,
y
)
R'
(
x
,
y
)}
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
6.
x
:
T
7.
y
:
T
R'
(
x
,
y
)
R'
(
y
,
x
)
latex
by
InteriorProof
((RWH (HypC 4) 5)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n
CollapseTHENA ((Au
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
5.
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
)
C1:
6.
x
:
T
C1:
7.
y
:
T
C1:
R'
(
x
,
y
)
R'
(
y
,
x
)
C
.
Definitions
x
.
t
(
x
)
,
{
T
}
,
t
T
,
P
Q
,
x
(
s1
,
s2
)
,
x
:
A
.
B
(
x
)
,
,
x
(
s
)
,
P
Q
Lemmas
or
functionality
wrt
implies
,
all
functionality
wrt
implies
origin